Wednesday, 11 May 2016

Climate Change: A Gilded Trap.

It is commonly understood that the human/landscape systems are inherently linked, with many emergent properties that are forcing the way towards new, adaptive management schemes. This is in light of the historic trend of rebound cycles and gilded traps that occur as humans exploit resources to the brink of no return. Consider the systematic depletion of North Atlantic Cod throughout northern waters and the Mediterranean Basin.

On a more global level however, it has recently been released by The Guardian that the world's carbon dioxide concentration is "teetering on the point of no return." Recordings from Cape Grim, Australia, among other stations have confirmed that there will be no return from the 400ppm cap that has been breached globally - a phenomenon that was first achieved in 2013 on seasonal scales as picked up by the Mauna Loa observatory. The below image shows the lag time between CO2 emissions and CO2 levels.

Turn the thermostat up by 10oC, and it won't heat up immediately - but in an hour or so's time, it will be far too hot. It is speculated that this is what is happening now. It might be interpreted that this continuing upward spiral in carbon dioxide content is the latest gilded trap created by humans. The UK is legally committed to an 80% reduction in carbon dioxide emissions by 20150, but this prospect seems bleak for two reasons:


  1.  The damage has already been done: Gilded Trap, in effect.
  2. Zero-carbon home rules have recently been scrapped by the government. 
Is it possible that we have all plummeted in to a gilded trap, unwittingly, as a species?

Saturday, 9 April 2016

Global Controls on the Catchment and Coast

The catchment and coast is an integrated system with water and sediment routing; nutrients; feedbacks and biodiversity all connected/influenced by the system. Understanding landscape processes is fundamental for fully understanding the Earth system and enabling improved environmental management.

Geomorphology as an eclectic science studies the origin and development of landforms, and how these forms combine to form landscapes. Its study helps explain how landscapes have developed in the past, function in the present and how they may change in the future. Such knowledge may then be used for environmental engineering, geological understanding, environmental policy and management; even archaeologists are interested to understand how erosional and depositional processes may influence artefact preservation.

  1. Landscapes are shaped by movements of mass - rock, sediment or water. 
  2. Landscape-shaping is influenced by multiple factors - tectonic, climatic, ecological 
  3. Landscape processes operate at different temporal and spatial scales.
  4. The Earth landscapes are dynamic. 
  5. Landscape dynamics are complex - internal readjustments occur with changing conditions.
  6. Landscapes are archives of the past and contain histories of their development.
  7. Atmospheric warming and sea level rise is influencing landscape dynamics. 
  8. Human activities are a geomorphic force, influencing the landscape dynamics. 
  9. The Earth landscapes are becoming more hazardous; with greater population? 
  10. Successful environmental management requires geomorphological knowledge. 

Common Pool Resources: Fisheries

A common-pool resource, fundamentally, is something shared.., a resource to which all users have free access. The actions of all individuals collectively affect the quality and quantity of the resource itself, giving rise to many interesting and controversial social dynamics.

The "tragedy of the commons" as previously stated, is based on a fundamental economic argument that people are rational, individual actors that obtain positive utility of a commons resource. Each user however, incurs negative environmental costs simply because the resource is shared. However, there will always be an incentive for a user to continue using the resource, because the positive utility is greater than the negative environmental impact.

The tragedy is incurred where the critical environmental threshold is reached.

Hardin (1968) 

Hardin saw the tragedy of the commons as an inevitable phenomena that might only be escaped with centralized top-down governance and a shift towards private property ownership - people, left to their own rational behaviours, are unable to solve the problem. 

Elinor Ostrom (2009 Nobel Prize in Economics) disagreed. A major alternative view to Hardin's approach is the idea of developing a social-ecological system that is self-governing in development and maintenance, which would prevent a system crash. 
Struggle is derived from conflicting values/interests, a lack of trust, biophysical limitations and complexity. Rules are generally designed with one set of social, economic, ecological or technological conditions in mind, and will become outdated as these conditions change. Further, the rules applied to one set of conditions are often not applicable to another set. Rules must evolve. 

Adaptive governance

Adaptive governance is required in complex systems in order to more efficiently provide information, deal with conflict, provide infrastructure and prepare the system for change. 

The Genius of Ted Ames

Ted Ames, a local fisherman, interviewed other retired fishermen, looking over nautical charts. Active fishermen will not divulge their own preferred fishing grounds, but have few reservations talking about where other fishermen go, and retired fishermen have nothing to lose. The triangulation of many data clouds from these fishermen eventually reconstructed a disappeared fishery - 'ghost cod.' This proved that cod did not move freely throughout all grounds, but behave as sub-populations. This implies that to fish out a whole sub-population is to drive it in to local extinction. 

This revelation begs the question of how well we actually understand the dynamics of the common-pool resources we use, and it must be remembered tat governance at the wrong scale creates a brittle system. 

Gilded Trap 

A gilded trap describes the increasing risk in a system of a crash in resource or market that may occur without warning. Social drivers such as population growth or market demand will increase the value of a resource, ergo its development and exploitation also increase. The ecological system will become more fragile, and far less resilient if shocked.
The difference between a trap and gilded trap is that in the former, there is a steady decline from a high social-system benefit to a low one, whilst for the latter the social system-benefit will stagnate for a while at a medium social-system benefit, before crashing very rapidly to a very low social-system benefit. This is far worse, since it can, without warning, devastate the economic system dependent upon it. Consider the island of Nauru, which yielded vast amounts of phosphate, decimated the environment until eventually the carrying capacity of the island dropped to a minimum, and the land could yield nothing.

The Gulf of Maine: Gilded Trap

As biodiversity drops, for instance in a fishing area, one more successful species is often targeted e.g. Maine lobster. In Maine, as fisheries biodiversity decreased, the percentage of lobster catches increased exponentially.  Social/environmental factors define the options and shape election processes as antecedent conditions, which meet a critical juncture whereby particular options are selected. From there, a structural persistence in these decisions produces and reproduces a socio-ecological trap with a reactive sequence to the situation.

In context, the coastal marine ecosystem of the Gulf of Maine was exploited by a relatively small, controlled fishery that fished for Atlantic cod. By the 1930's, the introduction of new catch technologies expanded the existing market and dramatically increased yield. A social trap developed as the tragedy of the commons became installed in the system, so that by the 1990's the collapse of coastal predatory finfish stocks were seen. The marine system became vulnerable and dominated by lobster populations, changes that coincided with a higher demand for lobsters. This led to the gilded trap; fishers switched from fishing a variety of stock to exclusively lobster, and this selective process that decimated the local biodiversity is not a series of choices that can be returned from. The Gulf is left with Homarus americanus monoculture, with an economic diversity 70% lower. Current successes derived from inflation-corrected lobster income is counteracted by the increased social and ecological consequences of future declines in lobster populations.

It can be easily seen in this case that collective actions from economically attractive opportunities often outweigh social/ecological risks associated. Strong initial financial gain reinforces the gilded trap for a time, and avoiding or escaping the trap requires managing for increased biological and economic diversity.

Monday, 4 April 2016

Coastal Habitats

Coastal habitats are controlled by the four types of tide; high/low/spring/neap, and by the geology of the landscape. The coastal zone is the area influenced by its proximity to the coast, and is split up in to 8 sub-zones:

  • The offshore zone - sees no significant transport of sediment by wave action
  • The littoral zone - sediment is transported by wave action
  • The nearshore zone - sediment transport is limited to the low tide line
  • The shore - subaerially exposed at least partially, experiences wave action
  • The foreshore - Subject to waves in non-storm conditions
  • The backshore - only subjected to wave action during storms
  • The surf zone - a zone where waves break, extending from the breaker zone to foreshore
  • The swash zone - The part of the coastline that experiences wave run up and backwash water 
Sediment sources
Terrestrial sediment is transported to the coast in the form of overland flow, flash flooding and rainfall. Steeper, more mountainous catchments will yield more sediment. 

The Tourism Cycle: A boom and bust cycle

Butler's Tourism Area Life Cycle model (TALC) presents the successive evolution of tourist areas over time, the changes in number of tourists visiting the area, and the quality of the area as a honeypot site. It is very unlikely that a tourism area is likely to be both environmentally friendly and economically viable, and Butler surmises that most sites are unfavourable on the environment, and, increasingly, not economically favourable either.

While there are different methods of presenting the tourism cycle and describing the evolution of a site, generally they all stipulate that exploration and public involvement first increases rapidly, before it begins to stagnate. At this point, several things could happen; reinvestment could be installed in to the area, and it will be rejuvenated; thus will tourism increase. An area may be simply consolidated, and there is a drawn region in the tourism cycle described as 'the critical range of elements of capacity.' Within this region, a tourism area will not decline as such, but will be maintained in its current state. If the area is not maintained, it will rapidly decline and lose a high amount of tourism focus.

The physical processes that occur in tourist regions are not typical of tourists or landscapes, but are a product of coupled systems. 

It is thought that under no practical circumstances would a tourism area ever be environmentally favourable on a region, regardless of whether it was economically favourable or not. This is because at the most basic level, humans settling in an area, urbanising it, altering the morphodynamics, hydrological system and the natural hierarchy, is ultimately impacting what was previously a natural stable state. However, it might be said that if a tourism area was to be created as a function of land regeneration, that may for instance have been fully degraded sites, then perhaps benefits may arise.

Further, if the tourism sector was more directly linked towards area regeneration and maintenance, then perhaps it would be possible to use the publicity (if awareness/education was encouraged) and subsequent funds to improve the vulnerability of an area. Not all tourism areas will follow the conceptual model Butler presents any where near as clearly as others; consider the establishment of the 'instant resort' - Cancun, Mexico.

Time scales

Daily changes in tourism revenue will not drive shoreline manipulations to increase tourism revenue and protect from coastal hazards. Similarly, rip currents and other fast nearshore hydrodynamics will not affect the patterns and fluctuations of tourism. 
Longer landscape evolution processes are also not affected by engineering; further, long-term economic trends do not directly drive alterations to the coast. 

Intermediate time scale processes are more influential. Consider the links between barrier-island processes and the initiation/growth of tourist resorts. There are direct links between governance and planning and the estimated probability of natural hazards occurring. Basically, human-landscape coupling is the strongest where natural physical processes significantly affect/render human landscapes vulnerable to changes and damage. These processes generally occur over intermediate timescales, from years to decades. Enough time to drive market investment in protection structures and respond to changes, but not enough time to generally do so efficiently. Landscape processes can directly cause loss and change construction costs, but also indirectly adversely affect the economy by changing human behaviour, feedback and response, altering insurance levels and market values. Econ/political activity directly changes landscape processes by altering the shapes of land and structures upon which natural processes operate.

Boom/bust cycles 

Spatial patterns will develop as the localising nature of protected resorts combines with continuous tourist demand and the eventual requirement of island migration and longshore sediment. This coupling is thought to produce high-frequency responses to storms and SLR, as well as boom/bust cycles. 

The dynamics of boom/bust cycles evolve over longer time frames and are a key characteristic of today's capitalist economies. It describes the periodic expansion and contraction of the economy, fluctuating job availability, productivity and market value. 

Saturday, 2 April 2016

Coupled Systems I: Florida & Jevons' Paradox

Humans and landscapes were interacting linearly, without the formation of feedback loops that would operate on regional or global scales. Humans are now a geomorphic force, and geometric human settlements erase natural shapes. From this manifests a dynamic coupled human-landscape system that is both hierarchal and complex. Landscape dynamics are dominated by water, sediment and biological routing, moderated by oceanic, atmospheric and fluvial processes. Human dynamics are dominated by profit-maximizing market forces and political action dictated by the estimated economic effect. In the Netherlands, the human system is less strongly coupled to the landscape system because it has mitigated its natural hazards.

Complexity refers to the simultaneous presence of simple and complicated behaviours. 

Human impact on landscape processes

  • Permanent loss of sediment from landscape modification
  • Increased global temperatures 
  • Alterations to atmospheric gas concentrations (chiefly carbon dioxide and methane)
  • Species loss/extinctions 
  • Alterations to oceanic system dynamics

 Human/landscape coupling 

  • Levees along the Mississippi leading to wetland loss, reducing dampening effect
  • Overfishing of cod in the N. Atlantic leaading to the collapse of fish economics. 
  • Increased damage from wildfires has increased fire protection and response practices. 
Emergent behaviour: The behaviours which emerge as a consequence of the coupling between humans and landscape systems, and would not be exhibited by one system or the other on its own. It is a fundamental property of all hierarchal systems. 

Non-linearity describes the dynamics that indicate strong two-way coupling between elements, and the transformative, sharply transitional interactions between. Dissipation meanwhile describes an irreversible behaviour that reduces differences in space or time e.g. hillslope creep. Landscapes are self-organising. 

Human system hierarchy

Neuron-level processes ----- stream of consciousness ------ feelings ----- communication/language ------ emotions ---- moods ---- rational thought/analysis ---- personality --- patterns of economic relations ---- beliefs ---- world view ---- laws ---- customs. 

The human system hierarchy is much more complex than landscape systems (pattern characteristics --- boundaries of transition zones --- morphology---grains/fluid parcels). Therefore, it has a greater potential for diverse and complex dymamics. 

The prediction of system dymamics can be formulated, but only if they are approached as multi-dimensional problems as opposed to individual conditions. 

Human impact strength is enhanced at economic and political levels; the mechanisms concentrating wealth permit the continuous application of resources not possible for average individuals/societies. Resource investment leads to further wealth concentration (profit) allowing more focused resource application - a positive feedback loop described as Jevons' paradox. 

Jevons' Paradox example: Beach replenishment enhances property value; profit is increased, facilitating further protection/replenishment activities. With the price of sand increasing, how long will the feedback loop be maintained before the system collapses?

Population density, housing development and property values in coastal counties along Florida state are all increasing with the rise in hazard from storm impacts. The homes of today are 60% larger than in 1973. Paradoxically, it is seen that investment in hazard protection fuels further development. Coastal tourism and tax revenue from coastal properties are fundamental to the economy. 

Backfire: Rebound and backfire is derived from Jevons' Paradox, and is a problem where a more efficient use of a resource spurs an increase in demand and consumption. Increased consumption thereby erases the gains achieved from improving efficiency. Energy efficiency is termed 'the fifth fuel.' Consider the increase in refrigeration unit purchases as they became more efficient.

Jevons' Paradox: The more efficient we become, the more people can be sustained; the more people we can sustain, the more energy we consume. There is a choice between brief greatness and prolonged mediocrity. 

Landscape processes and the human system broken down

The most obvious connection between the landscape and economic system is the influence of natural events such as hurricanes on economic structures or human settlements. The economic system impacts the landscape system as structures are built e.g. increasing run off, albedo. In the coupled system, landscape processes affect the economic system is directly impacted by changing construction costs, influencing market behaviour and directly changing the shape and character of the land upon which economic processes occur. 

The political system marshals resources and forces changes in the landscape system according to economic criteria, and most decisions are made by political agents. Political activity alters landscape processes in the coupled system by changing the shape and character of the land to create a nonlinear system with different hierarchial levels. 

A Prediction System

New Orleans has strongly coupled interactions between economic development, gemorphology, flooding and levee construction. Its coupling can be modelled through the landscape parameters or economic factors. This is the first step towards a prediction system for the future of the Earth's surface. With this, new emergent behaviours may be predicted, and investigations may be conducted regarding the impact of free-will decision-making processes on the landscape. 

Potential Problems

Markets are dominated by decision-making based on the profit margin, however in the models used to incorporate this the potential cultural changes that may well manifest from wide-spread concern regarding changes to our environment are not taken in to account. There might also be resistance to market forces e.g. from indigenous groups.  

It might be said that these models do, by and large, point out the obvious. Residents of New Orleans for example will be well aware of the relationship between storm surges, levees and the Hinterland; they will know the long-term issues of such a system. So why do they still reside there, and not alter their ways of approaching storm/flood management? Clearly there are factors regulating this behaviour that is not categorically understood or easy to influence. 

Perception of hazard and risk underestimate or discount conditions because management strategies of hazards such as beach nourishment reduce/masks the seen impact of coastal hazards, without actualy changing the driving natural forces. Federal subsidies and flood insurance masks the true cost in the economic system of such hazards. 

The human-landscape system models may have to account for challenges, modification and alternatives to the market system, as the human hierarchical system evolves and changes with the landscape. 
The human system is complex; the landscape system is complex. The models will always have to be improved. People make decisions for a variety of reasons; perhaps their incentives are market-driven; altruistic; cultural; a case of trust in certain political embodiments. It remains to be seen whether the global perception that humans and the environment are connected can be refined, and whether a drive for a change/improvement in management may be achieved. 

Friday, 1 April 2016

Soft engineering & Ecosystem-based coastal defence

Delta ecosystems provide storm protection, nutrient and pollution removal, and carbon storage. Yet, in Pakistan, 1/5th of the Indus delta plain has been eroded since it was dammed in 1932; the Yellow River delta in China has retreated 300m in 35 years (Giosan et al., 2014), and it is thought that delta areas will increase a risk of flooding by 50% - the poorly preserved ones at least.

These regions are starved lands, and The Nile carries 98% less mud than it did a century ago. The naturally high subsistence rates of deltas are greatly exacerbated by human activities; the Chao Phraya delta in Thailand sinks by up to 15cm per year due to intensive groundwater exploitation. Methane extraction in the Po delta of Italy causes the same reaction. As the marshes weaken, the vegetation dies and soil formation slows significantly, speeding up land loss.

Natural deltas may rise in balance with sea level through sediment accumulation in regularly inundated wetlands. Conventionally engineered deltas do not see this land rise through sedimentation, since that process is cut off by flood-protecting structures such as dikes or dams. The land sinks due to human activities including soil drainage, and wetland loss causes severe water level rise.

It is postulated that nature-based engineering solutions might maintain sedimentation processes that drive land-level maintenance/accretion and flood storage through wetland conservation and restoration, chiefly by removing conventional engineering methods.

Conventional Coastal Engineering

Conventional engineering methods include building sea walls, dykes and embankments, but these constructions require continuous and costly maintenance, to a point where, with increasing flood risk, it may be becoming unsustainable. This, alongside the negative impact such structures have upon land subsidence, soil drainage and hindering natural sediment accumulation, has led to the introduction of ecosystem-based approaches. Conventional engineering approaches may protect the Hinterland (presumably), but does very little for the coastline itself. Which would be expected to last longer against changing sea levels and storms?

Conventional engineering often disturbs natural processes in ways that can accelerate local sea-level rise and increase long-term flood risk. When wetlands are disconnected from the rivers, the land no longer builds up with sea-level rise; deltas are incredibly susceptible to subsidence. Relying on conventional engineering poses severe risk to local populations, and unintentionally exacerbates long-term flood risk, compromising the sustainability of local communities. 

Restoration

The Future Earth and Sustainable Deltas 2015 is one example of an inititative whose findings are not being implemented, and hard engineering methods prevail with regards to Hinterland protection. Gaps in knowledge slow down the implementation of generic solutions, and it is often forgotten that the health of wetlands is crucial to delta resilience. It is surmised by Giosan et al., 2014 that biophysical and biogeochemical research on wetland processes must be expanded to address the wide range of deltaic conditions. Further, agricultural and industrial practices should be assessed to select sustainable practices.

Wetland reclamation leaves nowhere for flood waters to go, meaning storm surges that do occur will rise higher and propagate faster/further inland. Consider the Scheldt estuary in Belgium, where high water levels have increased by 1.3m from 1930.

Nature-based engineering largely involves restoration in order to provide greater water storage, improve the capacity to build up sediment, regain elevation and maintain a cost-efficient, self-sustaining environment in the future, which conventional engineering cannot offer.

Soft engineering methods

Beach nourishment is a positive feedback loop that does not stop the erosion process. It is only really implemented on developed coastlines, not under the motivation of ecological conservation. When shoreline erosion is compensated with sand from outside the system, it must be continuously repeated as the sand rectangle spreads down the shoreface at an exponential rate. There are numerous problems and benefits of beach nourishment. Interestingly, you are allowed to suck up three sea turtles in the U.S dredging schemes before it becomes punishable - naturally there are big enforcement problems regarding this cutting edge rule.

 Mismatching coastal material is a problem from a residence/tourism angle, particularly when fine sand is replaced with rocky cobble. Further, changing the material alters the heat absorption capacity of the sand, which impacts turtle egg development and the ratio of males:females produced. False crawls can also be initiated when a beach is so fine-grained it is too compact for the female turtles to dig. 

Ecosystem-based flood defense

Cities located in estuaries or deltas such as London are thought to benefit enormously from the restoration of tidal marshes/mangroves between the city and sea, since they act to provide extra water storage areas and friction to attenuate the propagation of storm surges. It generally reduces flood risk inland. The marshes are constructed by the landward displacement of historical dykes, or purposeful, controlled flooding of chosen regions. Marshes improve water quality, sequester carbon, produce fisheries, work with conservation and create recreational space. The delivery of scarce nutrients such as silica by tidal wetland water suppresses the growth of toxic algae but stimulates the growth of phytoplankon. There is often a worry that these constructed wetlands will soon become submerged however. A cost-benefit analysis for Humber estuary stretching over 25 years showed it is more cost effective to restore tidal marshes than maintain dykes.

Behind sandy coastlines, beach and dune barriers are essential, and produced by artificial sediment placement, and in the Netherlands, a 17km stretch of coastline has combatted coastal erosion through careful planning and sculpting of the shore. This has avoided the need for constant dredging. The construction of oyster reefs from gabions on sand flats further work to reduce waves, currents and erosion.

Limitations 

Ecosystem-based flood defenses generally require more space than conventional structures, which makes them difficult to implement in urban areas such a s New York or Tokyo. The more space there is between the sea and urban area, the more efficient these approaches become. For this reason, cities closer to the coastline would benefit more from a combination of conventional and ecosystem-based engineering methods. Where there is little space at all along the beach, seaward ecosystem creation (e.g. off-shore reef development) may be an option, but could destroy or disturb the existing ecosystems. 

Locations with low elevation and high tidal inundation are often far less successful at growing tidal marshes, and this is a problem that may be transferred across to mangrove forests, although very little data is known about tropical projects in the long-term. Engineering structures such as weirs or sluices can help with this, but will also rack up the total price. Soil properties and their influence over water filtration, wind waves, bioturbation, grazing and seed dispersal can also hamper wetland development. 

Public perception may be an extremely strong blocker to implementing ecosystem-based management strategies; chiefly regarding the idea that laboriously reclaimed valuable land should be given back to the sea. In the Netherlands, there is significant cultural and political objection to such projects, where 50% of the population live below sea level. Their long-time struggle against the seas has become a part of their cultural heritage, however perhaps societal opposition may be overcome with clear communication of the benefits of such defense schemes.
Further public resistance may arise from concerns that wetlands may facilitate mosquito breeding and disease transmission, particularly in tropical regions amongst the more vulnerable areas e.g. Asia.

Thursday, 31 March 2016

Solar Radiation and Heat Transfer

Radiation

Differential solar heating of low and high latitudes is what drives the large-scale atmospheric and oceanic circulations of the planet. Most solar energy reaches the Earth as short-wave radiation (insolation) that reaches the surface, although some is reflected back in to space according to the albedo effect; the remained is absorbed and warms the atmosphere above it. The atmosphere and surface radiate thermal (long-wave) radiation back in to space. 

This differential solar heating fostered an equator-to-pole gradient in atmospheric and surface ocean temperatures, and Stefan-Boltzmann's law states that every body above absolute 0 (-273C) radiates. Wein's law describes that all bodies at a high temperatures radiates short wavelengths, whilst colder bodies radiate longer wavelengths. The sun behaves virtually as a black body, absorbing all energy received, and radiating energy at the maximum possible rate for a given temperature. 

Atmospheric layering is a consequence of the absorption of incoming radiation by water vapour gasses in the atmosphere. The amount of heat absorbed will depend on the specific heat capacity of the surface; land has a lower heat capacity than water, therefore it heats and cools much faster. The oceans are a huge source of stored heat.

Mid-Latitude Disturbances

In the westerly belt there is a complex pattern of moving high and low pressure systems: between 6,000-20,000m there remains a distinct westerly flow. Jinman (1861) held that storms develop where opposing air currents form lines of confluence, which were later called fronts.

The Global Climate System

This is composed of the unstable and rapidly changing atmosphere; the sluggish ocean with a thermal inertia, important for moderating atmospheric variation; the snow and ice cover (a.k.a cryosphere); and land surface - biosphere and lithosphere. The most important interaction is between the dynamic atmosphere and regulating ocean, althought he living matter of the biosphere also plays a key role in the system. The biosphere influences incoming radiation, out-going re-radiation, and the atmospheric composition. Marine biota further play a fundamental role in dissolution and storage of carbon dioxide. 

The driving mechanism of global climate is named 'radiative forcing' and anthropogenic forcings has added a new dimension to this. Radiation imbalances have arisen from natural processes and anthropogenic activity. The systems of climate and weather display extreme sensitivity to their initial conditions, and a small change in a weather system may have a disproportionately large impact on the whole. This is known as the Butterfly Effect. 

Heat

Heat may be transferred via conduction, and water is far more efficient at this than air - conduction is the means of transfer by molecular agitation. 
Free convection is another method, and describes the free rise and movement of air parcels to form cumular-type clouds. 
Forced convection describes orogenic displacement, when the air is forced to rise, forming strata-form clouds. This is the movement of heat energy by mass movement. 
Advection describes the nearly-horizontal transport of heat by oceans and the atmosphere, such as that found in the Jet Stream. 

Sensible heat is that which is exchanged by a body or thermodynamic system that changes the temperature and some macroscopic variables of the body. Volume and pressure will not be affected.
Latent heat is that which is released in a changing material state; in the process of evaporation a vast amount of heat is required to turn water in to vapour, ergo it is stored as the latent heat of vapourisation. This energy is taken from the surface of the oceans. Latent heat transport is responsible for the transfer of large quantities of heat energy in the ocean atmosphere system. 

Temperature Variation

Insolation is the absorption of solar radiation by the ground, and the nature of the surface conditions, sucha s moisture content, affects this radiative process. The specific heat capacity for the land is larger than that for the ocean, which warms and cools much more slowly. Cooling the oceans by 0.1C releases enough heat to raise surface air temperature by 10C. Diurnal ranges across the earth are moderated by the oceans. Asia, for instance, warms madly in the summer months, while the converse occurs in the winter, as cold, dense and dry air masses frequently block others, affecting the temperature globally. 

Sunday, 27 March 2016

The Tragedy of the Commons

Economist Mancur Olson argued that local governance develops a vested interest in maintaining local resources, whilst the sequential exploitation of roving bandits severs the local feedback and motivation to implement conservation practices. Berkes et al., 2006, examine the effect of roving bandits, and describe it as 'the tragedy of the commons.' This effect has been commonly recognised in the process of globalisation and the increased harvesting capabilities of fisheries.

The tragedy of the commons: A shared, open-pool resource is competitively depleted by harvesters who have no incentive to conserve; the dictating approach is that whatever one individual does not take another will, therefore there is no point in conserving the natural capital, so one may as well gain as much from the resource as one possibly can at the time. 

Commercial fishing was generally recognised as unsustainable after the process became industrialised and the diesel engine was introduced. The catchability coefficient of one given species is expressed as F = qf, where f describes fishing effort and q represents the effectiveness of a gear. The problem with this model is that q is subject to technologial fluctuations, and f cannot be effectively recorded. So there a gaping holes in fisheries science.

The idea of coral reef fisheries being sustainable is laughable: local fishers employ blasting methods and poisions such as cyanide, which actively devastates the habitats that support the communities they seek to fish - Cheilinus undulatus (humphead wrasse) has suffered serial depletion. How can a fishery, which destroys the habitats of the species upon which they rely, ever be considered sustainable?

Ecological Implications

Sequential exploitation of a marine resource or species that will often be a significant conduit for the flow of energy and materials within a community structure naturally poses great risk. One example is the historic exploitation of sea otters for their pelts in the Aleutian Islands (SE Bering Sea) - this key stone predator would control sea urchin populations, but their depletion caused mass deforestation of kelp beds by plagues of sea urchins for over a century. 
Of course, sea urchins themselves were also being harvested; in 1945 only around the east coast of Asia - by 1995 across the world. In Maine, this green sea urchin (Strongylocentrotus droebachiensis) population was rapidly depleted, after the trade-induced increase in demand occurred too rapidly for the local human governance to effectively respond with species conservation intent. 

Simplifying the food webs by rapidly depleting one element or species is the tragedy of the commons, and the resilience of the marine ecosystems towards global/natural threats such as climate change are significantly eroded. 

Management Implications

Often in the past, a local resource will have vanished before a problem is even noticed - further, serial depletions of local stocks may be masked by shifts in exploitation, i.e. changing where you fish, for instance. MPA's and NTAs currently existing are generally too small to sustain processes within the broader seascape - it must be remembered that protected zones are not closed systems. The Great Barrier Reef Marine Park is too small to sustain populations of marine mammals, turtles and migratory sharks.

Addressing the ecological impacts of globalisation and roving bandits means the demand from growth must be matched in alternative ways - substitutions perhaps. According to Berkes et al., 2006, the solution lies, ultimately, with the local populations, but the problem must be approached on multiple scales.

  • Continuous monitoring of trade and resource trends to ensure the problem-solving practices are consistent with local behaviour/activities
  • Align individual self-interest with long-term health of the resource 
  • Compare cost of regulation with cost of losses if no actions were to be taken
Basically, no single approach can solve the problems of roving bandits and globalisation: people are terrible at sharing common-pool resources. Combined approaches may slow down the exploits of roving bandits however, and replace destructive incentives with a resource rights framework that encourages environmental stewardship.

Failure of single-species stock assessment

There are four key broad problems with single-species assessments, as described by Pauly et al., 2002:
  • Assessment results have often been ignored on the grounds that they are not precise enough to use as evidence for the economically painful rsetriction of fishing practice: a.k.a. the "burden of proof" problem.
  • Assessments have failed and grossly underestimated the severity of stock decline in conjunction with the depensatory impacts of fishing during the decline. 
  • Too little attention has been given towards regulatory tactics; reasonable management targets have been produced through modelling and study, but have not been implemented, even in the short-term.
  • Cultivation and depensation effects result in recruitment failure after a severe decline, which is associated with changes in feeding interactions, particularly when predators or competitors are removed: this produces an alternate stable state ecosystem with severe implications for fisheries management. 
It all leads back to the tragedy of the commons: increases in fishing-fleet capacity advanced the overcapitalisation of the world's fisheries, particularly due to their open-access nature. Common-pool fisheries (amongst most resources) are not managed cooperatively. The basic theory of bioeconomics suggests that if fleet reduction (reducing the amount of active fishing vessels) is done properly, then an increase in net benefits from the resources would be produced. Taxing the net benefit increase from the remaining fishers could then be used to support fishers who had to stop fishing. 

Instead, what is currently happening is that taxes are taken externally from the fishing sector in order to maintain biologically unsustainable levels of fishing, and this is supported by the public at large because it seems that there is this underlying general opinion that the oceans will yield as much as we need - just because we need it. What we actually get is a variety of different forms of extinction.

Local extinction: Defaunation can drive species in to local extinction, and is particularly severe amongst large pelagic fishes, 90% of which experience range contractions. This range contraction often results in the direct elimination of vulnerable subpopulations. For instance, consider the Asian tigers, who have lost 93% of their historical range, while the tiger shark, which its much less extreme range constriction, still roams the world's oceans (McCauley et al., 2015). 

Ecological extinction: Reduction in population abundance can filter through an entire trophic system; for example when marine vertebrates have decreased in abundance by 22%, fishes have declined in aggregate by 38%, and baleen whales by 80-90%. These declines are termed ecological extinctions, and on land this process leads to the phenomenon of 'empty forests.' Ecological extinction of forest fauna alters tree recruitment, plant dispersal and causes population explosions of small mammals. 

Commercial extinction: This occurs when species drop below an abundance level where they can be economically harvested - it might be considered ironic that a commercial extinction might be what saves a species, from a "you're dead to me" perspective. This is not always the case and not all species are so lucky to be spared once they stop being economically viable - some species may become highly prized as soon as they become rare; their value increases as the anthropogenic Allee effect takes grip.  



Saturday, 26 March 2016

The Questions of Sustainability Science

How can we better represent the coupled system that is nature and society
within models and conceptualisations designed
to present the landscape system, human system, and sustainability?



How are modern cultures responding and learning from emergent long-term
 trends between the environment and human development, regarding the 
sustainability of the human-landscape system?



How can the vulnerability or resilience of individual ecosystems and
human livelihoods be recognised within the coupled system,
and how may they be managed?



Can a model or set of boundaries be produced that could
predict the degradation of an environment according to current 
activities and the socio-economic/environmental climate?



What is the best approach to direct the human-landscape system
towards sustaibability? Appealing to the market, governance,
culture or scientific field?






How can modern operational systems for monitoring and reporting on 
environmental and social conditions be integrated
to provide more useful guidance for efforts to navigate
a transition toward sustainability?





HOw can independent activities of research planning, monitoring, 
assessment and decision support be better integrated in to systems 
for adaptive management and societal learning?


Further reading: Kates et al., 2001. Science's Compass: Sustainability Science. SCIENCE Vol 292